Seemingly Unrelated Regression Equations for Developing a Pavement Performance Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Geoadditive Seemingly Unrelated Regression

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Bayesian nonparametric sparse seemingly unrelated regression model (SUR)∗

Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for ...

متن کامل

Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation

We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model — with a conditional quantile restriction for each equation — in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotical...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression 1

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Using Bootstrapped Confidence Intervals for Improved Inferences with Seemingly Unrelated Regression Equations

The usual standard errors for the regression coe cients in a Seemingly Unrelated Regression model have a substantial downward bias. Bootstrapping the standard errors does not seem to improve inferences. In this paper Monte Carlo evidence is reported which indicates that bootstrapping can result in substantially better inferences when applied to t-ratios rather than to standard errors. 3

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Applied Science

سال: 2015

ISSN: 1913-1852,1913-1844

DOI: 10.5539/mas.v9n13p199